Модернизация информационной технологии автоматизированного проектирования. Сапр - это системы автоматизированного проектирования

Совокупность взаимосвязанных и взаимодействующих средств, предназначенных для выполнения автоматизированного проектирования, называется техническим обеспечением САПР.

Технические средства совместно с общими системным программным обеспечением являются инструментальной базой САПР. Они образуют физическую среду, в которой реализуются другие виды обеспечения САПР (математическое, лингвистическое, информационное и пр.).

Технические средства в САПР решают задачи:

Ввода исходных данных описания объекта проектирования;

Отображения введенной информации с целью ее контроля и редактирования;

Преобразования информации (изменения формы представления данных, перекодировки, трансляции, выполнения арифметических и логических операций, изменения структуры данных и т. п.);

Хранения различной информации;

Отображения итоговых и промежуточных результатов решения;

Оперативного общения проектировщика с системой в процессе решения задач.

Для решения этих задач технические средства (ТС) САПР должны содержать процессоры, оперативную память (ОП), внешние запоминающие устройства (ВЗУ), устройства ввода-вывода информации (УВВИ), технические средства машинной графики, устройства оперативного общения человека с ЭВМ, устройства, обеспечивающие связь ЭВМ с удаленными терминалами и другими машинами. При необходимости создания непосредственной связи САПР с производственным оборудованием в составе ТС должны быть включены устройства, приобразующие результаты проектирования в сигналы управления станками, технологическими комплексами, автоматами. Номенклатура ТС, входящих в комплекс технических средств (КТС) САПР следующая:

1 ЭВМ (центральные процессоры, специализированные процессоры, оперативная память, процессоры ввода-вывода, устройства сопряжения интерфейсов)

2 Внешние запоминающие устройства (накопители на магнитных дисках, накопители на гибких магнитных дисках, накопители на магнитной ленте)

3 Устройства ввода-вывода информации (устройства ввода-вывода с перфокарт, устройства ввода-вывода с перфолент, печатающие устройства, устройства вывода на микрофиши, растровые печатающие устройства)

4 Устройства оперативной связи с ЭВМ (алфавитно-цифровые дисплеи, устройства речевого ввода-вывода, устройства управления курсором, графические дисплеи)

5 Устройства машинной графики (устройства кодирования графической информации, графопостроители, графические дисплеи, устройства управления курсором, растровые печатающие устройства)

6 Устройства подготовки данных

7 Устройства связи с технологическим оборудованием

8 Технические средства теледоступа и сетей ЭВМ (мультиплексоры передачи данных, аппаратура передачи данных, сетевые контролеры, связные процессоры, каналы связи).

Перечисленные задачи ТС решают совместно с общесистемным программным обеспечением. Под общесистемным программным обеспечением подразумеваются операционные системы (ОС) ЭВМ. Совокупность технических средств ЭВМ и ее программного обеспечения называют вычислительной системой (ВС).

Характеристики конкретной САПР в значительной степени определяются составом КТС и общесистемного программного обеспечения, которые должны обеспечивать:

Производительность ЭВМ, достаточную для решения всех проектных задач;

возможность оперативного взаимодействия проектировщика с ЭВМ в процессе проектирования;

Простоту освоения, эксплуатации и обслуживания КТС;

Открытость КТС для реконфигурации и дальнейшего развития;

Широкое использование входной и выходной графической информации о проектируемом объекте;


  • информационную связь между различными уровнями проектирования.

5.1.2 Общие сведения об ЭВМ и ВС, используемых в САПР

Основной КТС САПР являются разнообразные ЭВМ. При определении возможности использования той или иной ЭВМ в составе КТС их оценивают по совокупности различных показателей, главные из которых - технические характеристики, стоимость приобретения и эксплуатации.

К основным техническим параметрам ЭВМ относятся производительность, емкость оперативного запоминающего устройства (ОЗУ), пропускную способность подсистемы ввода-вывода информации, надежность функционирования и др.

Производительность - один из важнейших показателей ЭВМ, измеряемые количеством операций, выполняемых за единицу времени (обычно операций в секунду). Этот показатель для разных типов ЭВМ колеблется от нескольких сотен до сотен миллионов операций в секунду. В последние годы производительность определяется тактовой частотой процессора.

Емкость ОЗУ определяет возможности ЭВМ по выполнению сложных программ с обработкой больших объемов информации. Емкость ОЗУ может выражаться в битах, байтах, словах, килобайтах, мегабайтах и т.п. Наиболее распространена оценка емкости ОЗУ в байтах, килобайтах (1Кбайт=1024 байт), мегабайтах (1Мбайт=1024Кбайт), гигабайтах (1Гбайт=1024Мбайт). Емкость ОЗУ для ЭВМ, используемых в САПР, колеблется от десятков килобайт до единиц гигабайтов.

Пропускная способность подсистем ввода-вывода ЭВМ, позволяет определить возможности ЭВМ при обмене информацией с различными периферийными устройствами или другими ЭВМ. Она измеряется максимальным количеством единиц информации, переданная через подсистему ввода-вывода за единицу времени.

Надежность функционирования ЭВМ оценивается рядом показателей, имеющих вероятностный характер, например, вероятностью безотказной работы в течении заданного интервала времени, наработкой на отказ, средним временем восстановления работоспособности ЭВМ, коэффициентом готовности и т. д.

В настоящее время для работы САПР, в основном, используются ЭВМ общего назначения. На сегодняшний день в мире существует множество ЭВМ (далее – компьютеров) различных групп сложности, различных поколений, и здесь будет приведен краткий обзор компьютеров лишь одной фирмы IBM, как общепризнанного лидера в производстве и продаже вычислительной техники. Вся компьютерная серия IBM программно и технически совместима внутри себя, что послужило ее широкому распространению в том числе для автоматизации технологического проектирования.

Автоматизация проектирования занимает особое место среди информационных технологий.

Проектирование – процесс составления описания, необходимого для создания в заданных условиях еще не существующего объекта или алгоритма его функционирования, на основе первичного описания данного объекта и (или) алгоритма его функционирования.

Объектами проектирования может быть продукция производственно-технического назначения (средства производства - технологическое оборудование и оснастка); технологические процессы, в результате реализации которых проекты объектов воплощаются в материально-вещественную форму; здания, инженерные сооружения; транспортные средства, средства связи, вычислительной техники; организационно-управленческие системы и т.д.

Цель процесса проектирования состоит, прежде всего, в том, чтобы на основе исходной информации, получаемой в процессе проектирования, разработать техническую документацию для изготовления объекта проектирования. Проектирование включает в себя разработку технического задания (ТЗ), отражающего потребности, и реализацию ТЗ в виде проектной документации.

Проектирование, по существу, представляет собой процесс управления с обратной связью. Техническое задание формирует входы, которые сравниваются с результатами проектирования, и если они не совпадают, цикл проектирования повторяется вновь до тех пор, пока отклонение от заданных технических требований не окажется в допустимых пределах.

Под автоматизацией проектирования понимают систематическое применение ЭВМ в процессе проектирования при научно обоснованном распределении функций между проектировщиком и ЭВМ и научно обоснованном выборе методов машинного решения задач.

Научно обоснованное распределение функций между человеком и ЭВМ подразумевает, что человек должен решать задачи, носящие творческий характер, а ЭВМ задачи, решение которых поддается алгоритмизации.

Автоматизированное проектирование – проектирование, при котором отдельные преобразования описаний объекта и (или) алгоритма его функционирования или алгоритма процесса, а также представления описаний на различных языках осуществляется взаимодействием человека и ЭВМ.

Автоматизированное проектирование обычно осуществляют в режиме диалога человека с машиной на основе применения специальных языков общения человека с машиной.

Автоматическое проектирование – проектирование, при котором все преобразования описаний объекта и (или) алгоритма его функционирования или алгоритма процесса, а также представление описаний на различных языках осуществляются без участия человека.

При автоматическом проектировании пуск соответствующего оборудования и ввод в ЭВМ первичного описания объекта осуществляет человек.

Задачи автоматического проектирования

1. Сокращение трудоемкости и сроков конструкторской подготовки производства.

2. Повышение качества конструкторской документации.

3. Сокращение трудоемкости и сроков технологической подготовки производства.

4. Повышение качества разрабатываемых технологических процессов.

5. Уменьшение числа инженерно-технических работников, занятых проектированием и конструированием.

Существенным отличием автоматизированного проектирования от неавтоматизированного является возможность замены дорогостоящего и занимающего много времени физического моделирования математическим моделированием.

Решение проблем автоматизации проектирования с помощью ЭВМ основывается на системном подходе, т.е. на создании и внедрении САПР – систем автоматического проектирования технических объектов, которые решают весь комплекс задач от анализа задания до разработки полного объема конструкторской и технологической документации. Это достигается за счет объединения современных технических средств и математического обеспечения, параметры и характеристики которых выбираются с максимальным учетом особенностей задач проектно-конструкторского процесса.

Система автоматизированного проектирования (САПР) комплекс средств автоматизации проектирования, взаимосвязанных с необходимыми подразделениями проектной организации или коллективом специалистов (пользователем системы), выполняющий автоматизированное проектирование.

Система автоматического проектирования комплекс средств автоматизации проектирования, взаимосвязанных с необходимыми подразделениями проектной организации или коллективом специалистов (пользователем системы), выполняющий автоматическое проектирование.

Интегрированная система автоматического проектирования система автоматического проектирования, имеющая альтернативное программное обеспечение и операционную систему автоматического проектирования, позволяющую выбирать совокупность машинных программ применительно к заданному объекту проектирования или классу объектов проектирования.

Подобные документы

    Рассмотрение информационных технологий выполнения функций проектирования. Техническое обеспечение системы автоматизированного проектирования (САПР). Создание САПР для повышения эффективности труда инженеров. Эргономическое и правовое обеспечение САПР.

    реферат, добавлен 09.06.2015

    Создание систем автоматизированного проектирования (САПР). Цель - повышение эффективности труда инженеров, сокращение трудоёмкости проектирования и планирования. Категории САПР, структура, подсистемы. Примеры обслуживающих и проектирующих подсистем.

    статья, добавлен 01.04.2019

    Понятие и сущность проектирования технического объекта. Системы автоматизированного проектирования (САПР) и их структура. Классификация САПР по приложениям, виды обеспечения САПР. Этапы решения задач конструкторского проектирования, теория графов.

    лекция, добавлен 12.06.2016

    Назначение, термины и классификация систем автоматизированного проектирования (САПР). Системный подход к проектированию. Структура технического обеспечения. Вычислительные системы и периферийные устройства в САПР. Автоматизированные системы управления.

    методичка, добавлен 14.03.2013

    Анализ тесной связи инженерной деятельности с использованием систем автоматизированного проектирования (САПР). Классификация САПР по функциональным возможностям. Рейтинг популярности систем автоматизированного проектирования, их сравнительный анализ.

    статья, добавлен 02.04.2019

    Основные принципы построения системы автоматизированного проектирования (САПР). Применение электронно-вычислительных машин при проектно-конструкторских работах. Процесс проектирования в программное обеспечение САПР. Информационное обеспечение САПР.

    контрольная работа, добавлен 28.09.2016

    Изучение истории и этапов развития систем автоматизированного проектирования. САПР "Ассоль" на базе технологий Autodesk. САПР "Грация" и программа конструирования одежды. Анализ эффективности программного обеспечения на предприятиях различной мощности.

    реферат, добавлен 23.10.2013

    Понятие, структура и история развития систем автоматизированного проектирования (САПР). Классы продуктов САПР для машиностроений: тяжелый, средний и легкий. Состав и принципы проектирования программного обеспечения САПР, его функциональное назначение.

    курсовая работа, добавлен 05.10.2011

    Разработка и внедрение САПР - систем автоматизированного проектирования технических объектов, цель, основные принципы построения, стадии создания. Отображение процесса проектирования в программном лингвистическом и информационном обеспечении САПР.

    реферат, добавлен 10.12.2009

    Достоинства САПР. Классификация и обозначение, функции САПР. Характеристики CAE/CAD/CAM-систем и CALS-технологии. Структура технического обеспечения САПР. Системные среды и программно-методические комплексы. Назначение и состав системных сред САПР.

Автоматизация проектирования традиционно является одной из эффективных задач в сфере любого производства. Так, например, в машиностроении производственный цикл предприятия, определяемый временем нахождения деталей, узлов и готовых изделий в цехах, составляет 1% всего времени от начала проектирования до выпуска готовой продукции, остальные 99% приходятся на опытно-конструкторскую, конструкторскую и технологическую подготовку производства. С другой стороны сложность решения задачи автоматизированного проектирования связана с многообразием и спецификой конкретных предметных областей.

Создание САПР-продуктов происходит в следующих направлениях :

· универсальный графический пакет для плоского черчения, объемного моделирования и фотореалистической визуализации;

· открытая графическая среда для создания приложений (собственно САПР для решения разнообразных проектных и технических задач в различных областях);

· графический редактор и графическая среда приложений;

· открытая среда конструкторского проектирования;

· САПР для непрофессионалов (домашнего использования).

Наиболее полно возможности САПР-продукта на уровне универсального графического пакета можно проследить на примере AutoCAD 2000 - новой версии самого популярного в России чертежного пакета. Рассмотрим основные особенности новой разработки фирмы Autodesk :

· возможность работы с несколькими файлами чертежей в одном сеансе без потери производительности;

· контекстное всплывающее меню, включающее группу операций буферного обмена, повтора последней операции, отмены действий и возврата отмененного действия, вызова динамических интерактивных операций панорамирования и зуммирования и др.;

· наличие средств моделирования, позволяющих редактировать твердотельные объекты на уровне ребер и граней;

· возможность обращения к свойствам объектов;

· возможность выбора, группировки и фильтрации объектов по типам и свойствам;

· наличие технологии создания и редактирования блоков;

· возможность вставки в чертеж гиперссылок;

· включение DesignCenter - нового интерфейса технологии drag-and-drop для работы с блоками, внешними ссылками, файлами изображений и чертежей;

· управление толщиной (весом) линий напрямую с воспроизводством на экране;

· возможность работы со слоями без вывода на печать;

· наглядная работа с размерами и размерными стилями;

· наличие средств управления видами и системами координат;

· наличие нескольких режимов визуализации от проволочного каркаса до закраски;

· наличие средств обеспечения точности ввода при создании и редактировании;

· возможность компоновки чертежей и вывода на печать;

· работа с внешними базами данных;

· наличие средств настройки с помощью редакторов Visual LISP и Visual Basic;

· совместимость версий (в форматах DWG AutoCAD R14, R13 и форматах DXF AutoCAD R14, R13, R12).

По оценкам специалистов AutoCAD 2000 является почти идеальным универсальным 2D/3D (двух- и трехмерной геометрии) графическим пакетом средней ценовой категории.

Создание приложений связано со спецификой конкретной предметной области и решается эта задача на различных инструментальных платформах. Рассмотрим эту проблему применительно к САПР в радиоэлектронике. Радиоэлектроника является очень широкой научно-технической областью, поэтому остановимся только на проблеме проектирования радиоэлектронной аппаратуры (РЭА).

Основные требования, предъявляемые к САПР в области проектирования РЭА :

· решение всего комплекса задач проектирования РЭА: ввод структурной, функциональной и принципиальной схем; проведение расчетов; моделирование; конструирование аппаратуры; технологическая подготовка производства и изготовление;

· наличие полной библиотеки элементов и узлов, источников (генераторов) сигналов и шумов, с большим набором параметров и возможностью их легкой модификации;

· наличие справочной базы данных и ГОСТов;

· проведение необходимых расчетов (надежности, мощности, рабочих режимов и других параметров);

· возможность импорта и экспорта информации из других информационных систем;

· поддержка разнообразной периферии.

Процесс проектирования РЭА принято разбивать на этапы (системный, схемный, конструкторский, технологический, производственный), а саму проектируемую РЭА на уровни (система, подсистема или аппаратура, прибор, блок, ячейка или узел). Исходя из такого разбиения, представляется естественным требование, чтобы САПР поддерживали все этапы и уровни проектирования в полном объеме. К сожалению, на практике данный подход полностью не реализован. Ниже в табл. 6.5 представлены наиболее распространенные в России САПР и обозначены обеспечиваемые ими этапы проектирования .

Таблица 6.5

№ п/п Система проектирова-ния Этапы проектирования
Схемный Конструкторский
Устройство Прибор Блок Ячейка Устройство Прибор Блок Ячейка
OrCAD - - + + - - - +
OrCAD Capture - - + + - - - -
P-CAD - - + + - - - +
ACCEL EDA - - + + - - - +
DesigneLab - - + + - - - +
Симпатия - - + + - - - -
MR-CAD - - - + - - - -
TangoPRO - - - + - - - +
CADdy - - - + - - - +
SUSIE - - - + - - - -
Pspice - - - + - - - -
CircuitMaker - - - + - - - -
Dynamo - - + + - - - -
MicroCAP - - - + - - - -
Electronics Workbench - - - + __ - - -
HyperSignal Block Diagram - + + + - - - -
System View - + + + - - - -
AutoCAD - - - - + + + +
T-FLEXCAD - - - - + + + +
EUCLID - - - - + + + +

· САПР уровня ячеек (Р - CAD, OrCAD, DesignLab, ACCEL EDA, CADdy), обеспечивающие ввод схемы, разводку и производство печатных плат;

· схемотехнические САПР (PSpice, MicroCAP, Electronics Workbench, SISIE, MR-CAD, Симпатия, CircuitMaker, Dynamo), обеспечивающие ввод схемы и ее моделирование;

· САПР объемных конструкций (AutoCAD, EUCLID, T-FLEX CAD и др.), обеспечивающие разработку и выпуск конструкторской документации.

В последние годы большой интерес вызывают САПР для непрофессионалов (домашнего использования). Области их использования: индивидуальное строительство, любительское моделирование и конструирование, планирование ландшафта, интерьера и др. Основные требования к системам подобного класса - приемлемая стоимость и невысокие требования к ресурсам компьютера. В табл. 6.6 приведены характеристики таких САПР, представленных на рынке .

Таблицa 6.6

№ п/п Система проектирования Характеристики компьютера Возможности
ExtraCAD 3 Минимально допустимая конфигурация: процессор - 486/66, память - 8 Мб, ОС -DOS, видео - VGA. Оптимальная конфигурация: процессор - Р90, память - 16 Мб, ОС - Windows 95, видеокарта 3D Основные функции: дуги, сплайны, многоугольники, штриховка. Интерфейс - трудоемок. Документация - краткое описание
TuiboCAD 4 Минимально допустимая конфигурация: процессор - 486DX/2, память - 8 Мб, ОС -DOS, видео - VGA. Оптимальная конфигурация: процессор - Р90, память - 16 Мб, ОС - Windows 95, видеокарта 3D Основные функции: дуги, сплайны, многоугольники, штриховка, проволочные модели трехмерных объектов и их редеринг, импорт чертежей из двухмерных программ. Интерфейс - упорядочен, широкие возможности. Документация полная
TotalCAD Минимально допустимая конфигурация: процессор - 486/66, память - 8 Мб, ОС - DOS, видео - VGA. Оптимальная конфигурация: процессор - Р90, память - 16 Мб, ОС - Windows 95, видеокарта 3D Основные функции: является упрошенной версией TurboCAD, отсутствуют трехмерное моделирование, штриховка области, смешение сетки. Интерфейс - удобный, широкие возможности. Документация - электронная версия
DesignCAD LT Минимально допустимая конфигурация: процессор - 386, память - 8 Мб, ОС - DOS, видео - VGA. Оптимальная конфигурация: процессор - Р90, память - 16 Мб, ОС - Windows 95, видеокарта 3D Основные функции: двух- и трехмерное моделирование, сканирование чертежей, трассировка в векторный формат, экспорт в формате VRML. Интерфейс - широкие возможности, недостаточно удобен. Документация полная

Наиболее перспективным в области автоматизированного проектирования является использование открытых сред, основной особенностью которых является автоматизация процесса проектирования: выбор структуры объекта проектирования; необходимые расчеты, включая геометрические и т.д. Примером реализации такого подхода является СПРУТ-технология, реализованная в виде графической оболочки со сменной проблемной ориентацией DiaCAD . На рис. 6.8 представлены возможности проблемной ориентации DiaCAD, а на рис. 6.9 возможные варианты реализации конструкторских систем проектирования.

Рис. 6.8. Возможности проблемной ориентации DiaCAD

Однако DiaCAD является только составной частью СПРУТ-технологии (рис. 6.10) и используется в тех случаях, когда удается формализовать процесс проектирования в данной предметной среде. Там, где это невозможно, используются средства интерактивного черчения, так же как в известных средствах графического редактирования.

Рис. 6.9. Возможные варианты реализации конструкторских систем проектирования

Рис. 6.10. СПРУТ-технология

Возможности DiaCAD определяются перечнем решаемых задач:

· оперативная разработка чертежей с соблюдением требований ГОСТов;

· создание и использование иерархических графических баз данных;

· интерактивная параметризация чертежа и его типовых фрагментов;

· интеллектуальное редактирование (редактирование чертежа путем изменения значений размеров);

· получение параметризированных программ без программирования.

Функционально DiaCAD можно разделить на две части: среда администратора графической базы данных и среда конструктора.

Среда администратора графической базы данных предназначена для работы с иерархическими графическими базами данных и позволяет решать следующие задачи:

· создание базы данных с произвольной иерархической структурой;

· оперативный просмотр чертежа;

· копирование данных из одного чертежа в другой;

· вывод чертежа на графопостроитель или печатающее устройство.

Среда конструктора позволяет создавать и редактировать чертежи и геометрические модели.

Принципиальной отличительной особенностью DiaCAD является возможность создания на ее основе с использованием единой интегрированной среды СПРУТ собственной САПР.

Контрольные вопросы

1. Какие информационные технологии используются в корпоративном управлении?

2. Какие экономико-математические модели используются в корпоративном управлении?

3. В чем идея виртуального бизнеса?

4. На каких принципах основана архитектура «клиент-сервер»?

5. На каких принципах основана архитектура Интранета?

6. Какие открытые стандарты используются в архитектуре Интранета?

7. Определите классы задач, решаемых с помощью корпоративных информационных систем.

8. Какие существуют типы корпоративных информационных систем?

9. Сформулируйте основные направления информатизации банковской деятельности.

10. Какие программные системы используются в информатизации финансовой деятельности?

11. Назовите принципы информатизации управления технологическими процессами.

12. Что представляет собой модульная архитектура контроллеров?

13. Определите основополагающие аспекты информатизации образования.

14. Определите факторы, влияющие на эффективность использования информационных ресурсов в образовательном процессе.

15. Сформулируйте отрицательные последствия использования информационных технологий в образовании.

16. Назовите дидактические требования при использовании компьютерных технологий в образовании.

17. Каковы отрицательные и положительные качества использования информационных технологий в образовании?

18. Каковы основные направления использования информационных технологий в образовании?

19. Перечислите типы компьютерных обучающих программ, используемых в учебном процессе.

20. Сформулируйте основные направлениях создания САПР-продуктов.

21. Каковы основные особенности AutoCAD 2000?

22. Укажите основные требования, предъявляемые к САПР в области проектирования радиоэлектронной аппаратуры.

23. Что понимают под открытой средой в САПР-технологиях?

24. В каких случаях используется система DiaCAD?

^

Системы автоматизированного проектирования

Близкими по своей структуре и функциям к системам автоматизации научных исследований оказываются системы автоматизированного проектирования (САПР).

САПР - комплекс программных и аппаратных средств, предназначенных для автоматизации процесса проектирования человеком технических изделий или продуктов интеллектуальной деятельности.

Проектирование новых изделий - основная задача изобретателей конструкторов, протекает в несколько этапов, таких как нормирование замысла, поиск физических принципов, обеспечивающих реализацию замыслов и требуемые значении конструкции, поиск конструктивных решений, их расчет и обоснование, создание опытного образца, разработка технологий промышленного изготовления. Если формирование замысла и поиск физических принципов пока остаются чисто творческими, не поддающимися автоматизации этапами, то при конструировании и расчетах с успехом могут быть применены САПР (рис. 4.2).

База данных, блок имитационного моделирования, расчетный блок и экспертная система выполняют функции, аналогичные функциям соответствующих блоков АСНИ. Вместо блока связи с измерительной аппаратурой в САПР имеется блок формирования заданий. Проектировщик вводит в блок техническое задание на проектирование, в котором указаны цели, которые необходимо достичь при проектировании, и все ограничения, которые нельзя нарушить. Блок подготовки технической документации облегчает создание технической документации для последующего изготовления изделия.

Рис 4.2 - Типовая схема САПР

Аппаратное обеспечение САПР составляет ЭВМ с набором устройств, необходимых для ввода и вывода графической информации (графопостроитель, световое перо, графический планшет и др.).

В настоящее время САПР является неотъемлемым атрибутом крупных конструкторских бюро и проектных организаций, работающих в различных предметных областях. Это важная сфера приложения идей и методов информатики. САПР широко применяется в архитектуре, электротехнике, электронике, машиностроении, авиакосмической технике и др.

    1. ^

      Геоинформационные системы и технологии

Геоинформационные системы (ГИС) и ГИС- технологии объединяют компьютерную картографию и системы управления базами данных. Концепция технологии ГИС состоит в создании многослойной электронной карты, опорный слой которой описывает географию территории, а каждый из остальных слоев - один из аспектов состояния территории. Тем самым ГИС-технологии определяют специфическую область работы с информацией.

Технология ГИС применима везде, где необходимо учитывать, обрабатывать и демонстрировать территориально распределенную информацию. Пользователями ГИС-технологии могут быть как организации, чья деятельность целиком базируется на земле владельцы нефтегазовых предприятий, экологические службы, жилищно-коммунальное хозяйство, так и многочисленные коммерческие предприятия - банки, страховые, торговые и строительные фирмы, чья успешная работа во многом зависит от правильного и своевременного учета территориального фактора.

В основе любой ГИС лежит информация о каком-либо участке земной поверхности: континенте, стране, городе, улице.

БД организуется в виде набора слоев информации. Основной шрифт содержит географически привязанную карту местности (топооснова). На него накладываются другие слои, несущие информацию об объектах, находящихся на данной территории: коммуникации, в том числе линии электропередач, нефте- и газопроводы, водопроводы, промышленные объекты, земельные участки, почвы, коммунальное хозяйство, землепользование и др.

В процессе создания и наложения слоев друг на друга между ними устанавливаются необходимые связи, что позволяет выполнять пространственные операции с объектами посредством моделирования и интеллектуальной обработки данных.

Как правило, информация представляется графически в векторном виде, что позволяет уменьшить объем хранимой информации и упростить операции по визуализации. С графической информацией связана текстовая, табличная, расчетная информация, координатная привязка к карте местности, видеоизображения, аудиокомментарии, БД с описанием объектов и их характеристик.

Многие ГИС включают аналитические функции, которые позволяют моделировать процессы, основываясь на картографической информации.

Программное ядро ГИС можно условно разделить на две подсистемы: СУБД и управление графическим выводом изображения. В качестве СУБД используют SQL-серверы.

Рассмотрим типовую схему организации ГИС-технологии, в настоящее время сложился основной набор компонентов, составляющих ГИС. К ним относятся:


  1. приобретение и предварительная подготовка данных;

  2. ввод и размещение данных;

  3. управление данными;

  4. манипуляция данными и их анализ;

  5. производство конечного продукта.
Функциональным назначением данных компонентов является:

Приобретение и подготовка исходных данных; включает манипуляции с исходными данными карт - материалами на твердой или бумажной основе, данными дистанционного зондирования, результатами полевых испытаний, текстовыми (табличными) материалами, с архивными данными.

^ Ввод и размещение пространственной и непространственной составляющих данных включает конвертирование информации во внутренние форматы системы и обеспечение структурной и логической совместимости всего множества порождаемых данных.

^ Управление данными предполагает наличие средств оптимальной внутренней организации данных, обеспечивающих эффективный доступ к ним.

Функции манипуляции и анализа представлены средствами, предназначенными для содержательной обработки данных в целях обработки и реорганизации данных. С точки зрения пользователя, эти функции являются главными в ГИС-технологиях, потому что позволяют получать новую информацию, необходимую для управления, исследовательских целей, прогнозирования.

^ Производство конечного продукта включает вывод полученных результатов для конечных потребителей ГИС. Эти продукты могут представлять карты, статистические отчеты, различные графики, стандартные формы определенных документов.

Кроме этого, каждый картографический объект может иметь атрибутивную информацию, в которой содержится информация, которая не обязательно должна отображаться на карте (например, число жильцов какого-либо дома и их социальный статус).

Подавляющее большинство ГИС-систем различают геометрическую и атрибутивную компоненты баз данных ГИС. Их часто называют также пространственными (картографическими, геометрическими) и непространственными (табличными, реляционными) данными.

Картографичекая информация представляется точками, кривыми и площадными объектами.

Атрибутивная информация содержит текстовые, числовые, логические данные о картографических объектах. Большинство современных ГИС-инструментариев позволяют хранить информацию в составе БД, как правило, реляционных.

Атрибутивная информация хранится в виде отдельных табличных файлов, как правило, в форматах реляционных баз данных систем DBF, PARADOX, ORACLE, INGRESS. Такой способ характерен как для западных коммерческих продуктов, так и современных отечественных разработок.

  1. ^

    ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В РАСПРЕДЕЛЕННЫХ СИСТЕМАХ

    1. Технологии распределенных вычислений (РВ)

Современное производство требует высоких скоростей обработки информации, удобных форм ее хранения и передачи. Необходимо также иметь динамичные способы обращения к информации, способы поиска данных в заданные временные интервалы, чтобы реализовывать сложную математическую и логическую обработку данных.

Управление крупными предприятиями, управление экономикой на уровне страны требуют участия в этом процессе достаточно крупных коллективов. Такие коллективы могут располагаться в различных районах города, в различных регионах страны и даже в различных странах. Для решения задач управления, обеспечивающих реализацию экономической стратегии, становятся важными и актуальными скорость и удобство обмена информацией, а также возможность тесного взаимодействия всех участвующих в процессе выработки управленческих решений .

В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых можно было бы решать почти все классы их задач. Однако сложность решаемых задач обратно пропорциональна их количеству, и это приводило к неэффективному использованию вычислительной мощности ЭВМ при значительных материальных затратах. Нельзя не учитывать и тот факт, что доступ к ресурсам компьютеров был затруднен из-за существующей политики централизации вычислительных средств в одном месте.

Принцип централизованной обработки данных (рис. 5.1) не отвечал высоким требованиям к надежности процесса обработки, затруднял развитие систем и не мог обеспечить необходимые временные параметры при диалоговой обработке данных в многопользовательском режиме. Кратковременный выход из строя центральной ЭВМ приводил к роковым последствиям для системы в целом.


I

Рис. 5.1 - Система централизованной обработки данных

Появление персональных компьютеров потребовало нового подхода к организации систем обработки данных, к созданию новых информационных технологий. Возникло логически обоснованное требование перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных (рис. 5.2).


Рис. 5.2 - Система распределенной обработки данных

Распределенная обработка данных - обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.

В основе распределенных вычислений лежат две основные идеи:


  • много организационно и физически распределенных пользователей, одновременно работающих с общими данными - общей базой данных (пользователи с разными именами, которые могут располагаться на различных вычислительных установках, с различными полномочиями и задачами);

  • логически и физически распределенные данные, составляющие и образующие тем не менее, общую базу данных (отдельные таблицы, записи и даже поля могут располагаться на различных вычислительных установках или входить в различные локальные базы данных).
Дня реализации распределенной обработки данных были созданы многомашинные ассоциации, структура которых разрабатывается по одному из следующих направлений:

  • многомашинные вычислительные комплексы (МВК);

  • компьютерные (вычислительные) сети.
Многомашинный вычислительный комплекс - группа установленных рядом вычислительных машин, объединенных с помощью специальных средств сопряжения и выполняющих совместно единый информационно-вычислительный процесс. Под процессом понимается некоторая последовательность действий для решения задачи, определяемая программой.

Многомашинные вычислительные комплексы могут быть:


  • локальными, при условии установки компьютеров в одном помещении, не требующих для взаимосвязи специального оборудования и каналов связи;

  • дистанционными, если некоторые компьютеры комплекса установлены на значительном расстоянии от центральной ЭВМ и для передачи данных используются телефонные каналы связи.
Пример 1. Три ЭВМ объединены в комплекс для распределения заданий, поступающих на обработку. Одна из них выполняет диспетчерскую функцию и распределяет задания в зависимости от занятости одной из двух других обрабатывающих ЭВМ. Это локальный многомашинный комплекс.

Пример 2 . ЭВМ, осуществляющая сбор данных по некоторому региону, выполняет их предварительную обработку и передает для дальнейшего использования на центральную ЭВМ по телефонному каналу связи. Это дистанционный многомашинный комплекс.

Компьютерная (вычислительная) сеть - вычислительная система, включающая в себя несколько компьютеров, терминалов и других аппаратных средств, соединенных между собой линиями связи, обеспечивающими передачу данных

Терминал - устройство, предназначенное для взаимодействия пользователя с вычислительной системой или сетью ЭВМ. Состоит из устройства ввода (чаще всего это клавиатура) и одного или нескольких устройств вывода (дисплей, принтер и т.д.).

 
Статьи по теме:
Методические рекомендации по определению инвестиционной стоимости земельных участков
Методики Методические рекомендации по определению инвестиционной стоимости земельных участков 1. Общие положения Настоящие методические рекомендации по определению инвестиционной стоимости земельных участков разработаны ЗАО «Квинто-Консалтинг» в рамках
Измерение валового регионального продукта
Как отмечалось выше, основным макроэкономическим показателем результатов функционирования экономики в статистике многих стран, а также международных организаций (ООН, ОЭСР, МВФ и др.), является ВВП. На микроуровне (предприятий и секторов) показателю ВВП с
Экономика грузии после распада ссср и ее развитие (кратко)
Особенности промышленности ГрузииПромышленность Грузии включает ряд отраслей обрабатывающей и добывающей промышленности.Замечание 1 На сегодняшний день большая часть грузинских промышленных предприятий или простаивают, или загружены лишь частично. В соо
Корректирующие коэффициенты енвд
К2 - корректирующий коэффициент. С его помощью корректируют различные факторы, которые влияют на базовую доходность от различных видов предпринимательской деятельности . Например, ассортимент товаров, сезонность, режим работы, величину доходов и т. п. Об